Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Vaccines (Basel) ; 12(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38543960

ABSTRACT

Few data are available on antibody response for some SARS-CoV-2 vaccines, and there is a lack of ability to compare vaccine responses in the same population. This cross-sectional study conducted in Nicaragua examines the SARS-CoV-2 antibody responses in individuals, previously exposed to high infection rates who have received various vaccines. The vaccines under comparison include well-known ones like Pfizer (BNT162b2) and AstraZeneca (ChAdOx1-S), alongside less-studied vaccines including Soberana (Soberana 02), Abdala (CIGB-66), and Sputnik V/Sputnik Light. Overall, 3195 individuals participated, with 2862 vaccinated and 333 unvaccinated. We found that 95% of the unvaccinated were seropositive, with much lower titers than the vaccinated. Among the vaccinated, we found that Soberana recipients mounted the highest anti-spike response (mean difference (MD) = 36,498.8 [20,312.2, 52,685.5]), followed by Abdala (MD = 25,889.9 [10,884.1, 40,895.7]), BNT162b2 (MD = 12,967.2 [7543.7, 18,390.8]) and Sputnik with AstraZeneca as the reference group, adjusting for age, sex, vaccine status, days after last dose, and self-reported COVID-19. In addition, we found that subjects with complete vaccination series had higher antibody magnitude than those with incomplete series. Overall, we found no evidence of waning in the antibody magnitude across vaccines. Our study supports the conclusion that populations with high infection rates still benefit substantially from vaccination.

2.
Open Forum Infect Dis ; 11(2): ofae039, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38328496

ABSTRACT

Background: The impact of vaccination prior to infection on postacute sequelae of coronavirus disease 2019 (COVID-19, PASC), also known as long COVID, remains unclear. Here we assess the protective effect of vaccination on long COVID in a community-based setting. Methods: The Immunity Associated with SARS-CoV-2 (IASO) study is an ongoing prospective cohort of working adults that began in October 2020. Participants are actively followed for severe acute respiratory syndrome coronavirus 2 infection. We compared the prevalence of symptoms and symptom severity in vaccinated compared to unvaccinated cases. Our primary definition of long COVID was the presence of symptoms at 90 days postinfection; 30 days postinfection was also examined. Results: Overall, by 90 days postinfection, 13% of cases had long COVID, with 27% of unvaccinated cases and 8% of vaccinated cases reporting long COVID (relative risk [RR], 0.31 [95% confidence interval {CI}, .22-.42]). Vaccination was also associated with significantly lower average severity scores at all timepoints (eg, relative severity at 90 days postinfection: -2.70 [95% CI, -1.68 to -3.73]). In the pre-Omicron era, 28% of unvaccinated cases and 18% of vaccinated cases reported long COVID (P = .07), and vaccinated cases reported less severe symptoms including less difficulty breathing (P = .01; 90-day RR, 0.07). Conclusions: Vaccinated cases had lower prevalence of long COVID and reduced symptom severity.

3.
Influenza Other Respir Viruses ; 17(7): e13178, 2023 07.
Article in English | MEDLINE | ID: mdl-37492240

ABSTRACT

The SARS-CoV-2 pandemic and subsequent interruption of influenza circulation has lowered population immunity to influenza, especially among children with few prepandemic exposures. Using data from a prospective pediatric cohort study based in Managua, Nicaragua, we compared the incidence and severity of influenza A/H3N2 and influenza B/Victoria between 2022 and two prepandemic seasons. We found a higher incidence of A/H3N2 in older children in 2022 compared with pre-2020 and a higher proportion of severe influenza in 2022, primarily among children aged 0-4, suggesting an influence of the SARS-CoV-2 pandemic on influenza incidence and severity in children.


Subject(s)
COVID-19 , Influenza, Human , Child , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , Influenza A Virus, H3N2 Subtype , Cohort Studies , Prospective Studies , COVID-19/epidemiology , Seasons
4.
medRxiv ; 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36993385

ABSTRACT

The SARS-CoV-2 pandemic and subsequent interruption of influenza circulation has lowered population immunity to influenza, especially among children with few pre-pandemic exposures. We compared the incidence and severity of influenza A/H3N2 and influenza B/Victoria between 2022 and two pre-pandemic seasons and found an increased frequency of severe influenza in 2022.

5.
Clin Infect Dis ; 76(3): e1094-e1103, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35639580

ABSTRACT

BACKGROUND: Children account for a large portion of global influenza burden and transmission, and a better understanding of influenza in children is needed to improve prevention and control strategies. METHODS: To examine the incidence and transmission of influenza we conducted a prospective community-based study of children aged 0-14 years in Managua, Nicaragua, between 2011 and 2019. Participants were provided with medical care through study physicians and symptomatic influenza was confirmed by reverse-transcription polymerase chain reaction (RT-PCR). Wavelet analyses were used to examine seasonality. Generalized growth models (GGMs) were used to estimate effective reproduction numbers. RESULTS: From 2011 to 2019, 3016 children participated, with an average of ∼1800 participants per year and median follow-up time of 5 years per child, and 48.3% of the cohort in 2019 had been enrolled their entire lives. The overall incidence rates per 100 person-years were 14.5 symptomatic influenza cases (95% confidence interval [CI]: 13.9-15.1) and 1.0 influenza-associated acute lower respiratory infection (ALRI) case (95% CI: .8-1.1). Symptomatic influenza incidence peaked at age 9-11 months. Infants born during peak influenza circulation had lower incidence in the first year of their lives. The mean effective reproduction number was 1.2 (range 1.02-1.49), and we observed significant annual patterns for influenza and influenza A, and a 2.5-year period for influenza B. CONCLUSIONS: This study provides important information for understanding influenza epidemiology and informing influenza vaccine policy. These results will aid in informing strategies to reduce the burden of influenza.


Subject(s)
Influenza Vaccines , Influenza, Human , Respiratory Tract Infections , Child , Humans , Infant , Cohort Studies , Incidence , Influenza, Human/epidemiology , Prospective Studies , Respiratory Tract Infections/epidemiology , Infant, Newborn , Child, Preschool , Adolescent
6.
Influenza Other Respir Viruses ; 17(1): e13074, 2023 01.
Article in English | MEDLINE | ID: mdl-36457275

ABSTRACT

BACKGROUND: Much of the world's population has been infected with SARS-CoV-2. Thus, immunity from prior infection will play a critical role in future SARS-CoV-2 transmission. We investigated the impact of infection-induced immunity on viral shedding duration and viral load. METHODS: We conducted a household cohort study in Managua, Nicaragua, with an embedded transmission study that closely monitors participants regardless of symptoms. Real-time reverse-transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assays (ELISAs) were used to measure infections and seropositivity, respectively. Blood samples were collected twice annually and surrounding household intensive monitoring periods. We used accelerated failure time models to compare shedding times. Participants vaccinated ≥14 days prior to infection were excluded from primary analyses. RESULTS: There were 600 RT-PCR-confirmed SARS-CoV-2 infections in unvaccinated participants between May 1, 2020, and March 10, 2022, with prior ELISA data. Prior infection was associated with 48% shorter shedding times (event time ratio [ETR] 0.52, 95% CI: 0.39-0.69, mean shedding: 13.7 vs. 26.4 days). A fourfold higher anti-SARS-CoV-2 spike titer was associated with 17% shorter shedding (ETR 0.83, 95% CI: 0.78-0.90). Similarly, maximum viral loads (lowest cycle threshold [CT]) were lower for previously infected individuals (mean CT 29.8 vs. 28.0, p = 4.02 × 10-3 ), for adults and children ≥10 years, but not for children 0-9 years; there was little difference in CT levels for previously infected versus naïve adults aged above 60 years. CONCLUSIONS: Prior infection-induced immunity was associated with shorter viral shedding and lower viral loads, which may be important in the transition from pandemic to endemicity.


Subject(s)
COVID-19 , Adult , Child , Humans , COVID-19/epidemiology , SARS-CoV-2 , Cohort Studies , Virus Shedding , COVID-19 Testing
7.
Influenza Other Respir Viruses ; 16(6): 1112-1121, 2022 11.
Article in English | MEDLINE | ID: mdl-35965382

ABSTRACT

BACKGROUND: Human metapneumovirus (hMPV) is an important cause of pediatric respiratory infection. We leveraged the Nicaraguan Pediatric Influenza Cohort Study (NPICS) to assess the burden and seasonality of symptomatic hMPV infection in children. METHODS: NPICS is an ongoing prospective study of children in Managua, Nicaragua. We assessed children for hMPV infection via real-time reverse-transcription polymerase chain reaction (RT-PCR). We used classical additive decomposition analysis to assess the temporal trends, and generalized growth models (GGMs) were used to estimate effective reproduction numbers. RESULTS: From 2011 to 2016, there were 564 hMPV symptomatic infections, yielding an incidence rate of 5.74 cases per 100 person-years (95% CI 5.3, 6.2). Children experienced 3509 acute lower respiratory infections (ALRIs), of which 160 (4.6%) were associated with hMPV infection. Children under the age of one had 55% of all symptomatic hMPV infections (62/112) develop into hMPV-associated ALRIs and were five times as likely as children over one to have an hMPV-associated ALRI (rate ratio 5.5 95% CI 4.1, 7.4 p < 0.001). Additionally, symptomatic reinfection with hMPV was common. In total, 87 (15%) of all observed symptomatic infections were detected reinfections. The seasonality of symptomatic hMPV outbreaks varied considerably. From 2011 to 2016, four epidemic periods were observed, following a biennial seasonal pattern. The mean ascending phase of the epidemic periods were 7.7 weeks, with an overall mean estimated reproductive number of 1.2 (95% CI 1.1, 1.4). CONCLUSIONS: Symptomatic hMPV infection was associated with substantial burden among children in the first year of life. Timing and frequency of symptomatic hMPV incidence followed biennial patterns.


Subject(s)
Influenza, Human , Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Child , Cohort Studies , Humans , Infant , Metapneumovirus/genetics , Nicaragua/epidemiology , Paramyxoviridae Infections/epidemiology , Prospective Studies , Respiratory Tract Infections/epidemiology
9.
JAMA Netw Open ; 5(6): e2218794, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35759261

ABSTRACT

Importance: The impact of the SARS-CoV-2 pandemic on children remains unclear. Better understanding of the burden of COVID-19 among children and their risk of reinfection is crucial, as they will be among the last groups vaccinated. Objective: To characterize the burden of COVID-19 and assess how risk of symptomatic reinfection may vary by age among children. Design, Setting, and Participants: In this prospective, community-based pediatric cohort study conducted from March 1, 2020, to October 15, 2021, 1964 nonimmunocompromised children aged 0 to 14 years were enrolled by random selection from the Nicaraguan Pediatric Influenza Cohort, a community-based cohort in District 2 of Managua, Nicaragua. Additional newborn infants aged 4 weeks or younger were randomly selected and enrolled monthly via home visits. Exposures: Prior COVID-19 infection as confirmed by positive anti-SARS-CoV-2 antibodies (receptor binding domain and spike protein) or real-time reverse transcriptase-polymerase chain reaction (RT-PCR)-confirmed COVID-19 infection at least 60 days before current COVID-19 infection. Main Outcomes and Measures: Symptomatic COVID-19 cases confirmed by real-time RT-PCR and hospitalization within 28 days of symptom onset of a confirmed COVID-19 case. Results: This cohort study assessed 1964 children (mean [SD] age, 6.9 [4.4] years; 985 [50.2%] male). Of 1824 children who were tested, 908 (49.8%; 95% CI, 47.5%-52.1%) were seropositive during the study. There were also 207 PCR-confirmed COVID-19 cases, 12 (5.8%) of which were severe enough to require hospitalization. Incidence of COVID-19 was highest among children younger than 2 years (16.1 cases per 100 person-years; 95% CI, 12.5-20.5 cases per 100 person-years), which was approximately 3 times the incidence rate in any other child age group assessed. In addition, 41 symptomatic SARS-CoV-2 episodes (19.8%; 95% CI, 14.4%-25.2%) were reinfections. Conclusions and Relevance: In this prospective, community-based pediatric cohort study, rates of symptomatic and severe COVID-19 were highest among the youngest participants, with rates stabilizing at approximately 5 years of age. In addition, symptomatic reinfections represented a large proportion of symptomatic COVID-19 cases.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Nicaragua/epidemiology , Prospective Studies , Reinfection
10.
Clin Infect Dis ; 75(1): e257-e266, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34411230

ABSTRACT

BACKGROUND: There are few data on the full spectrum of disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection across the lifespan from community-based or nonclinical settings. METHODS: We followed 2338 people in Managua, Nicaragua, aged <94 years from March 2020 through March 2021. SARS-CoV-2 infection was identified through real-time reverse transcription polymerase chain reaction (RT-PCR) or through enzyme-linked immunosorbent assay. Disease presentation was assessed at the time of infection or retrospectively by survey at the time of blood collection. RESULTS: There was a large epidemic that peaked between March and August 2020. In total, 129 RT-PCR-positive infections were detected, for an overall incidence rate of 5.3 infections per 100 person-years (95% confidence interval [CI], 4.4-6.3). Seroprevalence was 56.7% (95% CI, 53.5%-60.1%) and was consistent from age 11 through adulthood but was lower in children aged ≤10 years. Overall, 31.0% of the infections were symptomatic, with 54.7% mild, 41.6% moderate, and 3.7% severe. There were 2 deaths that were likely due to SARS-CoV-2 infection, yielding an infection fatality rate of 0.2%. Antibody titers exhibited a J-shaped curve with respect to age, with the lowest titers observed among older children and young adults and the highest among older adults. When compared to SARS-CoV-2-seronegative individuals, SARS-CoV-2 seropositivity at the midyear sample was associated with 93.6% protection from symptomatic reinfection (95% CI, 51.1%-99.2%). CONCLUSIONS: This population exhibited a very high SARS-CoV-2 seropositivity with lower-than-expected severity, and immunity from natural infection was protective against symptomatic reinfection.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , COVID-19/epidemiology , Child , Humans , Reinfection/epidemiology , Retrospective Studies , SARS-CoV-2 , Seroepidemiologic Studies , Young Adult
11.
medRxiv ; 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-34341804

ABSTRACT

Accurate tracing of epidemic spread over space enables effective control measures. We examined three metrics of infection and disease in a pediatric cohort (N≈3,000) over two chikungunya and one Zika epidemic, and in a household cohort (N=1,793) over one COVID-19 epidemic in Managua, Nicaragua. We compared spatial incidence rates (cases/total population), infection risks (infections/total population), and disease risks (cases/infected population). We used generalized additive and mixed-effects models, Kulldorf's spatial scan statistic, and intracluster correlation coefficients. Across different analyses and all epidemics, incidence rates considerably underestimated infection and disease risks, producing large and spatially non-uniform biases distinct from biases due to incomplete case ascertainment. Infection and disease risks exhibited distinct spatial patterns, and incidence clusters inconsistently identified areas of either risk. While incidence rates are commonly used to infer infection and disease risk in a population, we find that this can induce substantial biases and adversely impact policies to control epidemics.

12.
medRxiv ; 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34845458

ABSTRACT

Background: An immune correlate of protection from SARS-CoV-2 infection is urgently needed. Methods: We used an ongoing household cohort with an embedded transmission study that closely monitors participants regardless of symptom status. Real-time reverse-transcription polymerase chain reaction (RT-PCR) and Enzyme-linked immunosorbent assays (ELISAs) were used to measure infections and seropositivity. Sequencing was performed to determine circulating strains of SARS-CoV-2. We investigated the protection associated with seropositivity resulting from prior infection, the anti-spike antibody titers needed for protection, and we compared the severity of first and second infections. Results: In March 2021, 62.3% of the cohort was seropositive. After March 2021, gamma and delta variants predominated. Seropositivity was associated with 69.2% protection from any infection (95% CI: 60.7%-75.9%), with higher protection against moderate or severe infection (79.4%, 95% CI: 64.9%-87.9%). Anti-spike titers of 327 and 2,551 were associated with 50% and 80% protection from any infection; titers of 284 and 656 were sufficient for protection against moderate or severe disease. Second infections were less severe than first infections (Relative Risk (RR) of moderated or severe disease: 0.6, 95% CI: 0.38-0.98; RR of subclinical disease:1.9, 95% CI: 1.33-2.73). Conclusions: Prior infection-induced immunity is protective against infection when predominantly gamma and delta SARS-CoV-2 circulated. The protective antibody titers presented may be useful for vaccine policy and control measures. While second infections were somewhat less severe, they were not as mild as ideal. A strategy involving vaccination will be needed to ease the burden of the SARS-CoV-2 pandemic.

13.
Clin Infect Dis ; 73(11): e4345-e4352, 2021 12 06.
Article in English | MEDLINE | ID: mdl-32642771

ABSTRACT

BACKGROUND: Obesity has been shown to increase the risk of severe outcomes and death for influenza virus infections. However, we do not understand the influence of obesity on susceptibility to infection or on nonsevere influenza outcomes. METHODS: We performed a case-ascertained, community-based study of influenza transmission within households in Nicaragua. To investigate whether obesity increases the likelihood of influenza infection and symptomatic infection we used logistic regression models. RESULTS: Between 2015 and 2018, a total of 335 index cases with influenza A and 1506 of their household contacts were enrolled. Obesity was associated with increased susceptibility to symptomatic H1N1pdm infection among adults (odds ratio [OR], 2.10; 95% confidence interval [CI], 1.08-4.06) but not children, and this association increased with age. Among adults with H1N1pdm infection, obesity was associated with increased likelihood of symptoms (OR, 3.91; 95% CI, 1.55-9.87). For middle-aged and older adults with obesity there was also a slight increase in susceptibility to any H1N1pdm infection (OR, 1.20; 95% CI, .62-2.34). Body mass index (BMI) was also linearly associated with increased susceptibility to symptomatic H1N1pdm infection, primarily among middle-aged and older women (5-unit BMI increase OR, 1.40; 95% CI, 1.00-1.97). Obesity was not associated with increased H3N2 susceptibility or associated symptoms. CONCLUSIONS: We found that, among adults, obesity is associated with susceptibility to H1N1pdm infection and with symptoms associated with H1N1pdm infection, but not with susceptibility to H3N2 infection or associated symptoms. These findings will help target prevention efforts and therapeutics to this high-risk population.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Aged , Female , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/complications , Influenza, Human/epidemiology , Middle Aged , Obesity/complications , Obesity/epidemiology
14.
mBio ; 11(1)2020 01 21.
Article in English | MEDLINE | ID: mdl-31964741

ABSTRACT

In contrast to influenza virus vaccination, natural infection induces long-lived and relatively broad immune responses. However, many aspects of the antibody response to natural infection are not well understood. Here, we assessed the immune response after H1N1 influenza virus infection in children and adults in a Nicaraguan household transmission study using an influenza virus protein microarray (IVPM). This technology allows us to simultaneously measure IgG and IgA antibody responses to hemagglutinins of many different virus strains and subtypes quantitatively with a high throughput. We found that children under 6 years of age responded to natural infection with a relatively narrow response that targeted mostly the hemagglutinin of the strain that caused the infection. Adults, however, have a much broader response, including a boost in antibodies to many group 1 subtype hemagglutinins. Also, a strong recall response against historic H1 hemagglutinins that share the K133 epitope with the pandemic H1N1 virus was observed. Of note, some children, while responding narrowly within H1 and group 1 hemagglutinins, induced a boost to H3 and other group 2 hemagglutinins when infected with H1N1 when they had experienced an H3N2 infection earlier in life. This is an interesting phenomenon providing evidence for immune imprinting and a significant new insight which might be leveraged in future universal influenza virus vaccine strategies. Finally, preexisting immunity to pandemic H1 hemagglutinins was significantly associated with protection from infection in both children and adults. In adults, preexisting immunity to non-H1 group 1 hemagglutinins was also significantly associated with protection from infection.IMPORTANCE It is known since Thomas Francis, Jr. published his first paper on original antigenic sin in 1960 that the first infection(s) with influenza virus leaves a special immunological imprint which shapes immune responses to future infections with antigenically related influenza virus strains. Imprinting has been implicated in both protective effects as well as blunting of the immune response to vaccines. Despite the fact that this phenomenon was already described almost 60 years ago, we have very little detailed knowledge of the characteristics and breadth of the immune response to the first exposure(s) to influenza virus in life and how this compares to later exposure as adults. Here, we investigate these immune responses in detail using an influenza virus protein microarray. While our findings are mostly descriptive in nature and based on a small sample size, they provide a strong basis for future large-scale studies to better understand imprinting effects.


Subject(s)
Antibodies, Viral/immunology , Immunologic Memory , Influenza, Human/immunology , Influenza, Human/virology , Orthomyxoviridae/immunology , Adult , Age Factors , Animals , Antigens, Viral/immunology , Child , Cross Reactions , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Mice , Orthomyxoviridae/classification , Phylogeny , Vaccination
15.
Clin Infect Dis ; 70(11): 2290-2297, 2020 05 23.
Article in English | MEDLINE | ID: mdl-31300819

ABSTRACT

BACKGROUND: Influenza causes a substantial burden worldwide, and current seasonal influenza vaccine has suboptimal effectiveness. To develop better, more broadly protective vaccines, a more thorough understanding is needed of how antibodies that target the influenza virus surface antigens, hemagglutinin (HA) (including head and stalk regions) and neuraminidase (NA), impact influenza illness and virus transmission. METHODS: We used a case-ascertained, community-based study of household influenza virus transmission set in Managua, Nicaragua. Using data from 170 reverse transcriptase-polymerase chain reaction (RT-PCR)-confirmed influenza virus A(H1N1)pdm infections and 45 household members with serologically confirmed infection, we examined the association of pre-existing NA, hemagglutination inhibiting, and HA stalk antibody levels and influenza viral shedding and disease duration using accelerated failure time models. RESULTS: Among RT-PCR-confirmed infections in adults, pre-existing anti-NA antibody levels ≥40 were associated with a 69% (95% confidence interval [CI], 34-85%) shortened shedding duration (mean, 1.0 vs 3.2 days). Neuraminidase antibody levels ≥80 were associated with further shortened shedding and significantly shortened symptom duration (influenza-like illness, 82%; 95% CI, 39-95%). Among RT-PCR-confirmed infections in children, hemagglutination inhibition titers ≥1:20 were associated with a 32% (95% CI, 13-47%) shortened shedding duration (mean, 3.9 vs 6.0 days). CONCLUSIONS: Our results suggest that anti-NA antibodies play a large role in reducing influenza illness duration in adults and may impact transmission, most clearly among adults. Neuraminidase should be considered as an additional target in next-generation influenza virus vaccine development.We found that antibodies against neuraminidase were associated with significantly shortened viral shedding, and among adults they were also associated with shortened symptom duration. These results support neuraminidase as a potential target of next-generation influenza virus vaccines.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Antibodies, Viral , Child , Hemagglutinin Glycoproteins, Influenza Virus , Humans , Neuraminidase , Nicaragua/epidemiology , Virus Shedding
16.
J Infect Dis ; 218(9): 1378-1382, 2018 09 22.
Article in English | MEDLINE | ID: mdl-30085119

ABSTRACT

Epidemiologic studies indicate that obesity increases the risk of severe complications and death from influenza virus infections, especially in elderly individuals. This work investigates the effect of obesity on the duration of viral shedding within household transmission studies in Managua, Nicaragua, over 3 seasons (2015-2017). Symptomatic obese adults were shown to shed influenza A virus 42% longer than nonobese adults (adjusted event time ratio [ETR], 1.42; 95% confidence interval [CI], 1.06-1.89); no association was observed with influenza B virus shedding duration. Even among paucisymptomatic and asymptomatic adults, obesity increased the influenza A shedding duration by 104% (adjusted ETR, 2.04; 95% CI, 1.35-3.09). These findings suggest that obesity may play an important role in influenza transmission.


Subject(s)
Influenza A virus/physiology , Influenza, Human/physiopathology , Influenza, Human/virology , Obesity/complications , Obesity/virology , Virus Shedding/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nicaragua , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...